THERMAL DECOMPOSITION OF VINYL AZIDES IN ACRYLIC ACID DERIVATIVES: SYNTHESIS OF 1-VINYLAZIRIDINES

Yujiro NOMURA, Naoto HATANAKA, and Yoshito TAKEUCHI Department of Chemistry, College of General Education, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153

By the thermal decomposition of α - or β -azidostyrene and 2-azidotrans-2-butene in acrylonitrile or methyl acrylate were obtained 2-substituted 1-(1-phenylvinyl)aziridine, 1-trans-styrylaziridine, and 1-(1-methyl-cis-propenyl)aziridine, respectively, in good yields.

Thermal or photochemical decomposition of vinyl azides to 1-azirines has attracted attention; $^{1\sim3}$) the thermolysis or photolysis of α -azidostyrene($\underline{1}$) 4,5) gave 2-phenyl-1-azirine($\underline{2}$) nearly quantitatively. The decomposition of vinyl azides under the presence of a dipolarophile seems interesting because it was claimed that the decomposition proceeds via vinylnitrene, an active 1,3-dipole, though alternative pathways were also suggested. Thus, $\underline{1}$ was heated to reflux in excess acrylonitrile($\underline{3a}$) for 6.5 hr. After removal of acrylonitrile, three

products, $\underline{2}$ (36 %), 2-cyano-1-(1-phenylviny1)aziridine($\underline{4a}$, 45 %), 4-cyano-2-pheny1-1-pyrroline⁶⁾($\underline{5a}$, 7 %) were isolated from the residue; $\underline{2}$ and $\underline{4a}$ were isolated by fractional distillation, and $\underline{5a}$ (solid, mp 91.5-92.5°C) was independently separated from the reaction mixture by column chromatography on silica gel.

Similarly, $\underline{1}$ was heated to reflux in excess methyl acrylate($\underline{3b}$) to give $\underline{2}$ (15 %), $\underline{4b}$ (68 %), and $\underline{5b}^6$) (6 %).

Separation of 1-vinylaziridines with column chromatography could not be adopted for the products were decomposed on silica gel or alumina. The yields of the products except <u>5a</u> were estimated by vpc with naphthalene as an internal standard.

The reaction of β -azidostyrene($\underline{6}$)⁷⁾ with $\underline{3}$ afforded the corresponding 1-vinyl-aziridines($\underline{7}$) exclusively. Thus, $\underline{6}$ was heated to reflux in excess $\underline{3a}$ or $\underline{3b}$ for 2 hr. After removal of the solvent, 2-cyano- and 2-methoxycarbonyl-1-styryl-aziridines($\underline{7a}$ and $\underline{7b}$) were obtained by fractional distillation in 35 and 56 % yields respectively. The relatively low yield is responsible for the formation of polymeric substance.

Ph
$$C = C \stackrel{H}{N_3} + CH_2 = CH \stackrel{R}{\longrightarrow} \stackrel{Ph}{\longrightarrow} C = \stackrel{C}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} C = \stackrel{C}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} C = \stackrel{C}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow}$$

A large 3 J(14 Hz, see Table 1) for $\underline{7a}$ and $\underline{7b}$ clearly establishes the transconfiguration of styryl group.

Similarly, 2-azido-trans-2-butene($\underline{8}$)⁵) was heated in refluxing $\underline{3a}$ or $\underline{3b}$ for 2.5 hr. After removal of the solvent, 1-(1-methyl-cis-propenyl)aziridines($\underline{9a}$ and $\underline{9b}$) were obtained by fractional distillation in 73 and 83 % yields, respectively.

Here
$$C = C = CH$$
 $R = CH$ $R = CH$

Though 1-vinylaziridines have the structure of enamine, they are not obtained by the conventional method of synthesis for enamines from carbonyl compounds and aziridines. Only a few of them have so far been prepared by the addition of aziridine to acetylenic compounds carrying strong electron-withdrawing substituent such as alkylsulfonyl, methoxycarbonyl, or cyano group to give a mixture of cis and trans products. A noteworthy feature of the present method apart from its simplicity is the stereospecific preparation of vinylaziridines which seems to favor our method over the previous ones.

All of 1-vinylaziridines described here are new compounds, and the spectral data and elemental analyses are consistent with the proposed structure. Physical data for 1-vinylaziridines prepared from the vinyl azides are given in Table 1.

Table 1. Physical Data of 1-Vinylaziridines

		ir		nmr (δ)**	
	(°C)	MS (M ⁺)	ν _{C=C} (cm ⁻¹)	vinyl proton	aziridine ring proton
<u>4a</u>	112-113/0.5 mmHg	170	1640	4.42(d, J=1.6 Hz) 4.84(d, J=1.6 Hz)	2.2-2.5(m)
<u>4b</u>	110-112/0.5 mmHg	203	1620	4.52(d, J=1.6 Hz) 4.86(d, J=1.6 Hz)	2.0-2.6(m)
<u>7a</u>	53 - 54*	170	1640	6.14(d, J=14 Hz) 6.75(d, J=14 Hz)	2.3-2.6(m)
<u>7b</u>	112-114/0.1 mmHg	203	1630	6.01(d, J=14 Hz) 6.73(d, J=14 Hz)	2.0-2.6(m)
<u>9a</u>	44-45/0.3 mmHg 29.5-30.5*	122	1670	4.84(q, J=7 Hz)	2.2-2.7(m)
<u>9b</u>	45-47/0.2 mmHg	155	1670	4.73(q, J=7 Hz)	2.1-2.7(m)

^{*} mp ** JEOL JMH-100, 100 MHz, CDCl3, TMS as an internal standard

References

- 1) A. Hassner and F. W. Fowler, J. Am. Chem. Soc., 90, 2869 (1968).
- 2) M. Komatsu, S. Ichijima, Y. Ohshiro, and T. Agawa, J. Org. Chem., <u>38</u>, 4341 (1973).
- 3) G. L'abbé and G. Mathys, J. Org. Chem., 39, 1778 (1974).
- 4) A. Hassner, F. W. Fowler, and L. A. Levy, J. Am. Chem. Soc., 89, 2077 (1967).
- 5) A. Hassner and F. W. Fowler, J. Org. Chem., <u>33</u>, 2686 (1968).
- 6) A. Padwa, M. Dharan, J. Smolanoff, and W. I. Wetmore, Jr., J. Am. Chem. Soc., 95, 1945 (1973).
- 7) A. Hassner and F. Boerwinkle, J. Am. Chem. Soc., 90, 216 (1968).
- 8) W. E. Truce and C. G. Brady, J. Org. Chem., 31, 3542 (1966).
- 9) T. Sasaki, T. Yoshioka, and K. Shoji, J. Chem. Soc. (C), <u>1969</u>, 1086.

(Received July 2, 1976)